当前位置:首页 > 技术应用 > 功能糖技术 > 糖醇技术 > 详细内容
赤藓糖醇的特性及应用
发布时间:2011/4/26  阅读次数:3939  字体大小: 【】 【】【

       摘   要:赤藓糖醇是一种低热量甜味剂,具有热值低、结晶性好、口感好、无致龋性、对糖尿病人安全等特点,其应用前景极为广泛。本文主要论述了赤藓糖醇的性质、特性、生产及在食品工业中的应用。
关键词:赤藓糖醇;性质;特性;应用;生产

       赤藓糖醇是一种采用生物技术生产的新型发酵型低热量甜味剂,1999年6月国际食品添加剂专家委员会(JECFA)批准赤藓糖醇作为食用甜味剂,且无需规定ADI值。目前,赤藓糖醇在美国、日本、澳大利亚、新西兰、新加坡、韩国、墨西哥等国已用于食品生产。2007年6月19日我国卫生部公告批准赤藓糖醇作为甜味剂应用于口香糖、固体饮料、调制乳等食品中。
       1   赤藓糖醇的性质
       赤藓糖醇在自然界分布十分广泛,海藻、蘑菇以及甜瓜、葡萄、桃等水果类中均含有赤藓糖醇。由于细菌、真菌和酵母也能产生赤藓糖醇,所以在发酵食品果酒、啤酒、酱油中也存在,另外还存在于人和哺乳动物的体液中。
       赤藓糖醇为白色结晶的四碳多元醇类化合物,化学名称为1,2,3,4-丁四醇,分子式为C4H10O4,分子量122.12,熔点126℃,沸点329~331℃,溶解热-97.4J/g,其化学性质与山梨糖醇、甘露糖醇和木糖醇等糖醇相类似。
       1.1   甜味纯正
       赤藓糖醇与蔗糖的甜昧特性十分接近,爽净且无后苦味,甜度约为蔗糖的70%~80%。与其他甜味剂混合使用具有改善、协调味质作用,如赤藓糖醇与高甜味剂甜菊苷以1000:(1~7)混合使用,可有效掩盖甜菊苷的后苦味;将20%以上的赤藓糖醇与白砂糖并用,其后味和甜味比白砂糖更为理想;溶液中1%~3%的赤藓糖醇能有效掩饰刺激性口味,改善溶液的口感和风味。
       1.2   稳定性高
       赤藓糖醇在热、酸、碱条件下稳定,适用的酸碱范围为pH2~12,符合一般食品对酸碱的要求,由于不含羰基,所以在与氨基酸共存的情况下无美拉德反应发生。试验表明,赤藓糖醇在160℃高温条件下不会出现分解及热变色,避免高温加工过程食品出现的焦化。
       1.3   结晶性好
       赤藓糖醇吸湿性低,结晶性好,易粉碎制得粉状产品,其吸湿性在糖醇及蔗糖等甜味剂中是最小的。温度为20℃、相对湿度为90%的环境中,放置5d后的吸湿增重,麦芽糖约为17%,蔗糖约为10%,而赤藓糖醇仅为2%左右。
       1.4   熔解热高
       其溶解热为-97.4J/g,由于溶解热较大,溶于水时会吸收较多的能量,有很强的制冷作用。实验表明,将10g赤藓糖醇溶解于90g水中,温度下降约4.8℃,用它添加生产的固体食品和糖果在食用时具有口感清凉特点。
       2   赤藓糖醇的生物学特性
       2.1   低能量值
       赤藓糖醇分子能量值为1.67kJ/g,而木糖醇11.7 kJ/g,异麦芽酮糖醇8.36KJ/g,蔗糖16.72 kJ/g,故其热量值仅为蔗糖10%左右。同时由于赤藓糖醇分子小,被动扩散容易被小肠吸收,80%的赤藓糖醇可以进入血液循环,被人体吸收后的赤藓糖醇分子不能被机体内的酶系统分解,不为机体提供热量,不参与糖代谢引起血糖变化,只能透过肾脏从血液滤出,随尿液从人体排出。实验表明,一次性摄人赤藓糖醇25g,3h内有40%从尿液中排出,大约在24h内,有80%从尿液中排出,尿液总排出量达90%以上,没有被小肠摄入的20%赤藓糖醇进入大肠后,肠道细菌发酵成不饱和脂肪酸被机体利用的不到50%。因此被摄人赤藓糖醇中只有5%~10%能为人体提供能量,故赤藓糖醇的实际能量值仅为0.84KJ/g,是所有多元糖醇甜昧剂中能量最低的一种,也被称为“零”热值配料。
       2.2   高耐受性,无毒副作用
       赤藓糖醇的生物耐受性好,安全无毒,动物和临床实验中不会导致腹泻的山梨糖醇最大单次剂量是0.24g/kg体重,而赤藓糖醇为0.80 g/kg体重,是木糖醇、麦芽糖醇、异麦芽糖醇和乳糖醇的2~3倍,甘露醇的3~4倍,与其他多元糖醇相比,赤藓糖醇在人体内的最大耐受量为50g/d。这是因为绝大部分赤藓糖醇能被小肠吸收,避免了高浓度碳水化合物不吸收引起的肠道内高渗现象,防止腹泻出现,也避免了不吸收物质在肠道细菌发酵中产生大量挥发性物质使肠胃胀气的副作用。实验还表明,赤藓糖醇无致畸毒性,不影响生殖和发育,不引起染色体变异,不致癌变,也不刺激肿瘤生长。
       2.3   抗龋齿性
       赤藓糖醇不被人口腔中变形链球菌利用,变形链球菌属于产酸细菌,它与食物成分中的碳水化合物作用时产生酸性物质,特别是含蔗糖丰富食物,细菌利用这些糖类可加速繁殖,产生大量的酸性物质(葡萄糖在口腔中8h,口腔pH值会降至5)。酸性物质与牙釉质发生反应,使牙表面脱钙、软化,出现了牙洞,引起龋齿,但由于赤藓糖醇不被这类微生物分解为酸性物质,同时还对口腔病原细菌有抑制作用,因此能起到护齿作用,具有抗龋齿性。
       3   在食品工业中应用
       赤藓糖醇上述性质和生物学特性使其应用领域十分广泛,特别是在食品工业中作为低热量甜味剂和高甜度甜味剂的稀释剂,广泛应用于糖果(包括巧克力食品)、乳类饮料、焙烤制品、软饮料等,最大使用量为3%。
       3.1   糖果、巧克力类食品
       赤藓糖醇在糖果配方中用以替代砂糖,除可明显降低热量外,还可改善低热量糖果的消化耐受性,改善产品的风味、组织形态及贮存稳定性;在无糖糖果的制造中替代传统甜味剂,使热量降低约85%,用于巧克力中,可降低热量约30%;通过与阿斯巴甜、安赛蜜强力甜味剂混合使用,可以赋予食品类似砂糖的风味;高溶解热可制成有清凉感的糖果,易粉碎而不吸湿的特性,便于各种糖果的忌湿贮存;稳定性好,可以防止一般食品加工中出现褐变或分解现象,特别是硬糖生产时的高温熬煮下的褐变。赤藓糖醇的应用,解决了巧克力制造中大部分功能性甜味剂的吸湿性高造成的巧克力起霜现象。和其他甜味料并用制成的巧克力在食感、风味、口感等方面更优于蔗糖制品,而热稳定性的特点应用在80℃以上的环境中制造巧克力,能大大缩短加工时间,有益改善巧克力产品风味。
       3.2   焙烤类食品
       赤藓糖醇熔点低、吸湿性低特点应用于焙烤类食品,可防潮,延长食品的货架寿命。实验表明,煎饼在125℃的赤藓糖醇溶液中浸渍1~2s,室温下冷却,在相对湿度80%,温度30℃下放置5d后,吸水率仅为0.5%,未被覆的吸水率达18%。蔗糖、油脂对于形成焙烤食品特有的组织结构、口感和风味具有相当重要的作用,但高糖、高脂食品不符合现代人崇尚健康的理念,利用赤藓糖醇低能量值、甜味纯正及甜味协调作用替代蔗糖等,不仅有利健康,而且焙烤产品具有更好的结构紧密性和柔软性,且有着不同的口溶性,所以赤藓糖醇可以广泛应用在烘焙食品上。
       3.3   保健类食品
       赤藓糖醇具有不易被酶降解,不参与糖代谢,不导致血糖变化的特点,适合糖尿病患者保健食品的应用;代替蔗糖制成低能量值的保健食品,适合肥胖人群、高血压病人及心血管病人食用;食用后在肠道中的代谢特点,适合肠胃功能不调人群;利用抗龋齿功能,可制成对口腔健康有益的糖果和口香糖。
       3.4   乳制品
       赤藓糖醇渗透压降低,抑制了乳酸发酵,控制酸味上升,可以延长产品的保质期及货架期,用脱脂乳10%,水90%进行乳酸发酵,pH值调至4.2,乳酸菌8.8×108的发酵乳,添加10%的赤藓糖醇,10℃保持一个月后,pH值为4.1,乳酸菌数为7.2×108,达到了酸味上升少,乳酸菌数下降也少的效果。而用蔗糖取得同样效果需添加20%以上,且甜度上升,适口效果也不如前者;单独使用赤藓糖醇的冰淇淋质构坚硬,可生产硬质冰淇淋新产品。
       3.5   饮料类
       赤藓糖醇对饮料主要感官特征的影响体现在提高甜度、厚重感和滑润感,降低苦涩感,掩饰异味,改善饮料的整体风味,如赤藓糖醇应用于茶饮料中可以明显减少其后苦味;利用赤藓糖醇溶解时吸热大的特点制成清凉性固体饮料;利用赤藓糖醇生产新型的低热量饮料中,添加赤藓糖醇的果汁饮料,可降低热量75%~80%;稳定特性可以应用在需要巴氏、高温短时和超高温等杀菌工艺的饮料中。赤藓糖醇促进溶液中乙醇分子与水分子结合,可降低酒类饮料中酒精的异味和感官刺激,有益于改善蒸馏酒和葡萄酒的质量。
       4   赤藓糖醇的生产方法
       赤藓糖醇的生产可分为化学合成法和生物合成法2种。
       4.1   化学合成法
       化学合成法可由丁烯二醇与过氧化氢反应,然后将其水溶液与活性镍催化剂混合并加入阻化剂氨水,在0.5MPa左右通氢气,氢化后得赤藓糖醇产品,但化学法的生产效率低,尚未实现工业化生产。
       4.2   微生物发酵法
       发酵法生产赤藓糖醇始于20世纪90年代,国际上均采用微生物发酵法大批量生产赤藓糖醇。生产赤藓糖醇的碳源有烷烃、单糖和双糖等,葡萄糖、果糖、甘露糖和蔗糖都是生产赤藓糖醇的良好碳源,其中D-甘露糖的转化率最高,达31.5%。但是由于成本因素,目前主要以小麦或玉米等淀粉质原料,经酶降解生成葡萄糖,由耐高渗透酵母或其它菌株发酵生产,能生产赤藓糖醇的有假丝酵母属(Candida)、球拟酵母属(Torulopsis)、毛孢子菌属(trichosporum)、三角酵母属(Trigonopsis)、毕赤酵母属(Pichia)等。赤藓糖醇发酵法工业化生产流程如下:淀粉—液化—糖化—葡萄糖—生产菌株发酵—过滤—色层分离—净化—浓缩—结晶—分离—干燥,最后得到赤藓糖醇,平均收率约50%。研究表明,赤藓糖醇发酵法受多种因素影响,如渗透压的改变明显影响多元醇的生成,无机盐Mn2+、Cu2+能提高赤藓糖醇的产率,氧气、温度都对其产量有影响,与化学合成法相比,发酵法更具有生产优势。
       5   应用前景
       赤藓糖醇除在食品工业中应用外,还可应用于医药、化妆品、化工等许多方面,其可部分替代甘油的作用生产化妆品,延缓化妆品变质;作为有机合成的中间体,用于制造油漆、炸药和医药等产品的原料;作为药品的矫味剂和片剂的赋形剂,有效改善药品的口感;作为高分子聚合物的组份和添加剂,生产聚醚多羟基化合物。目前,赤藓糖醇的用量逐年递增,市场需求量在不断提高,赤藓糖醇的应用前景极为广泛。◇

参考文献
[1]杨海军.赤藓糖醇的发展及应用.中国食品添加剂,2004,1:100-102.
[2]叶娴,董海洲.微生物发酵法生产赤藓糖醇的研究.食品与药品,2007,9(4):38-40.
[3]凌关庭.食品添加剂手册(第三版).北京:化学工业出版社,2003.
[4]刘仲栋.食品添加剂原理及应用技术(第二版).北京:中国轻工业出版社,2000.
[5]陆正清.赤藓糖醇的开发及其在食品工业中的应用.江苏调味副食品,2005,22(4):11-13.
[6]朱明.赤藓糖醇的生产技术及在食品工业中的应用.淀粉与淀粉糖,2005,2:4-6.
[7]徐莹,李景军,何国庆.赤藓糖醇研究进展及在食品中的应用.中国食品添加剂,2005,3:92-95.
[8]金其荣,金丰秋.赤藓糖醇的开发及其应用.淀粉与淀粉糖,2002,3:13-15.
[9]杨海军,郑逢战.赤藓糖醇在无糖糖果中的应用.农产品加工,2006,8:33-34.
[10]夏勇,徐彩菊,毛光明.赤藓糖醇急性毒性和遗传毒性实验研究.检测研究.癌变·畸变·突变,2003,15(1):54-55.
[11]蒋世琼,马丽.淀粉糖新产品的开发与研究.食品工业科技,2002,1,22(3):83-88.
[12]郑建仙.低能量食品.北京:中国轻工业出版社,2001.
[13] Lin   SJ,Wen   CH,Liau   JC,Chu   WS.Screening   and   production of   erythritol   by   new-ly   isolated   osmophilic   yeast-l   ike   fungi.Process   Biochem.2001,36:1249-1258.
[14]Oficial   Gazette   of   the   United   States   Patent& Trademark   Office   Patent,s.1999,1228(2)Nov.9.
[15]范光先,张海平,诸葛健.耐高渗酵母产赤藓糖醇的影响因素.无锡轻工大学学报,2001,20(2):133-136.
作者简介:肖素荣(1964~   ),女,山东潍坊人,实验师,主要从事生物技术实验教学工作。

  

来源:功能食品配料网
我要评论
  • 匿名发表
  • [添加到收藏夹]
  • 发表评论:(匿名发表无需登录,已登录用户可直接发表。) 登录状态:未登录
最新评论
所有评论[0]
    暂无已审核评论!

全球最大的中文功能食品配料行业网站                            

Copyright2010--2022 功能食品配料网     网站备案号:京ICP备13040527-2号

郑重声明:本站部分内容来源于网络,所载文章、数据仅供参考,违法和不良信息举报邮箱:1184955935@qq.com   后台登陆     

合作联系:QQ:1184955935  微信:gongnengfood 

关注功能食品配料网微信公众号、头条号了解更多信息

  

 声明:本站部分资料来源于网络,如有侵权请及时联系管理员删除,谢谢